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Flutter instability prediction techniques for bridge
deck sections

I. Robertson, S. J. Sherwin∗;† and P. W. Bearman

Department of Aeronautics, Imperial College London, South Kensington Campus,
London, SW7 2AZ, U.K.

SUMMARY

In order to investigate the �uid=structure interaction of a bridge deck in a cross wind, a two-dimensional
hp=Spectral �uid solver has been modi�ed to incorporate a body undergoing translational and rotational
motion. A moving frame of reference is attached to the body to utilize the e�ciency of a �xed mesh
solver. The critical reduced velocity at which a bridge deck undergoes a two degree of freedom �utter
instability is then predicted using various methods: a theoretical linear potential model; quasi-steady
theory; a linear evaluation of applied forces using prescribed motion; and free translational and rotational
motion of the structure. These predictions are compared with experimental data and the various merits
of each scheme are reported. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The possibility of �uid structure interaction leading to catastrophic failure should never be
underestimated, particularly in long-span bridge design. This was illustrated by the Tacoma
Narrows Bridge disaster in 1940. The construction of a modern long-span bridge can cost
in excess of £250 million and new design strategies using lighter materials and improved
construction techniques are continually being developed. Whilst these advances may appear
to be economical the savings must be considered alongside the inherent stability and safety of
the design. One major risk is in the area of �uid structure interaction leading to aerodynamic
instability. Currently, a detailed understanding of why one design is stable to a higher wind-
speed than a second seemingly almost identical design is lacking.
The aerodynamic stability of bridge decks is established by carrying out numerous wind

tunnel tests using spring-mounted sectional models that reproduce, at small scale, the relevant
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geometric and structural characteristics of the full scale bridge. Many experiments are required
to determine the critical wind speed for the onset of instability, each with slightly di�erent
model characteristics, until an acceptable solution is found. A particularly sensitive aspect of
the design is the leading edge region of a bridge deck. Computational �uid dynamics (CFD)
has the potential to provide the engineer cheaply, quickly and e�ciently with the information
required to ensure safe but economical designs. It is unlikely in the short term that CFD will
replace wind tunnel testing but it is possible that it could play a role at an early stage in a test
program to eliminate unsatisfactory designs and thus shorten the route to �nding an acceptable
bridge con�guration. CFD can also provide insights into �uid structure interactions that may
be very di�cult, or even impossible, to obtain from conventional wind tunnel experiments.
Over the last decade various CFD algorithms have been developed to address these needs.

Among them are �nite element methods [1–3], based on the ALE formulation; �nite volume
methods [4], using deformable hybrid grids; mesh free discrete vortex methods [5, 6]; and
spectral element methods [7], using co-ordinate transformation. The majority of these cases
are con�ned to the study of the body with transverse or in-line motion and mainly concentrate
on lock-in [1, 2, 4, 8–10], where the structure is excited by von Karman vortex shedding and
there is interaction between the vortex and vibration frequencies. Comparatively little work
has been done on the torsional �uid structure interaction. However, it is this instability that
was responsible for the failure of the Tacoma Narrows Bridge [11–13].
In this paper the motion of a single body structure undergoing rotational and translational

motion due to a cross wind is simulated. The critical reduced velocity for the onset of �utter
is numerically predicted and compared with other analytical, semi-analytical and experimental
methods.
In Section 2 the aerodynamic and structural governing equations are speci�ed and in Sec-

tion 3 the bridge deck geometry and governing parameters are given. In Section 4 prediction
of the critical reduced velocity is performed using various methods and the results compared
with experimentally generated data.

2. SOLUTION METHOD

For the problem of an elastically mounted rigid body acted upon by �ow forces, the governing
equations are the incompressible Navier–Stokes equations with moving boundary conditions,
i.e.,

∇ · v=0 (1)
@v
@t
+ (v · ∇)v=−1

�
∇p+ �∇2v; in D(t) (2)

v= vb(t) on �(t)= @D(t) (3)

where v is the �uid velocity, p is the pressure and �(t) denotes the interface between the
�ow and the body and moves with the unknown velocity vb.
For a single rigid body, its planar motion can be described in terms of three displace-

ment components de�ned at the centre of gravity [14], X=(�; �; �)T, where � and � are the
translational displacement components in the x and y direction, respectively, and � denotes
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the rotational displacement component. We may write the governing equation for this planar
motion as

M �X+DẊ+KX= �F (4)

where M;D and K are the mass, damping and sti�ness matrices, respectively, �F is a vector
whose components are external forces and moment and a dot above a variable denotes dif-
ferentiation with respect to time. The mounting system for the body is assumed to have both
sti�ness and damping.
Instead of directly solving the coupled system of Equations (1)–(4), an e�cient strategy is

to solve the Navier–Stokes equations and structural equation explicitly and thereby decouple
their solutions on each time step. Therefore, at each time level, we initially solve the Navier–
Stokes equations to obtain the aerodynamic force and moment acting on the body, the force
and moment are then used as an input into the structural solver to predict the displacement
of the body at the next time level. This displacement is then employed to determine the �ow
domain (precisely the interface of �uid and structure) in the �uid solver.
The most general and widely used method to simulate moving boundary problems is the

arbitrary Lagrangian–Eulerian formulation (ALE) where the computational mesh at the far-
�eld boundaries is stationary and the mesh on the moving boundary takes the same velocity
as the structure [14]. The con�guration of the computational mesh therefore changes at each
time-step resulting in the Navier–Stokes solver constantly being regenerated, negating the
ability to utilize e�cient direct solvers for static meshes.
In Reference [10], a numerical method is formulated which enables e�cient computations

by evaluating the governing two-dimensional aerodynamic equations (1)–(3) on a �xed mesh.
These equations are calculated in a moving frame of reference which is �xed to the structure
and the relationship between this moving frame of reference and a stationary �xed frame of
reference is established which can be treated as additional forcing terms in the Navier–Stokes
equation (2). This extra computational cost is small compared to that saved by evaluating the
equations on a static mesh.

2.1. Non-dimensional equations

We will consider the non-dimensional form of the Navier–Stokes equations:

∇∗ · v∗ =0 (5)

@v∗

@t∗
+ (v∗ · ∇∗)v∗ =−∇∗p∗ + Re−1(∇∗)2v∗ (6)

The variables in the equations above have been non-dimensionalized as follows:

t∗ =
tU
D
; x∗=

x
D
; y∗=

y
D

u∗ =
u
U
; v∗=

v
U
; p∗=

p
�U 2

Re=
�UD
�

=
UD
�

(7)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1239–1256



1242 I. ROBERTSON, S. J. SHERWIN AND P. W. BEARMAN

where D is a characteristic length of the body, and � and U are the density and the freestream
velocity, respectively. Correspondingly, the forces and moment are non-dimensionalized by,

F∗
x =

Fx
�DU 2 ; F∗

y =
Fy

�DU 2 ; M ∗
� =

M�

�D2U 2 : (8)

The governing structural equation for the one degree of freedom heaving mode is

m �y + cyẏ + kyy=Fy (9)

where m is the mass per unit length of the body, cy is the damping constant, ky is the sti�ness
constant, and y denotes the transverse location of the centre of the body. If we use the same
non-dimensional scales as applied to the Navier–Stokes equations, then we obtain

�y∗ + 2�y

(
2	
Uy

)
ẏ∗ +

(
2	
Uy

)2
y∗=

F∗
y

ny
(10)

Uy=
U
fyD

(reduced velocity); ny=
m
�D2

(mass ratio) (11)

Here fy is the natural frequency of the structure in the vertical direction and �y is the structural
damping ratio. For the one degree of freedom torsional mode, Equation (4) becomes

I ��+ c��̇+ k��=M� (12)

where I is the moment of inertia, c� is the torsional damping constant, k� is the torsional
sti�ness constant, and � denotes the rotational angle of the body around the elastic centre.
The right-hand side of Equation (12) is the moment relative to the elastic centre. The non-
dimensional form of (12) is

��+ 2��

(
2	
U�

)
�̇+

(
2	
U�

)2
�=

M�

n�
(13)

where

U�=
U
f�D

(reduced velocity); n�=
I
�D4

(moment of inertia ratio) (14)

In the following sections the asterix notation to denote non-dimensional variables will be
relaxed and all variables should be taken as non-dimensional.

3. BRIDGE DECK MODEL

All the computational experiments contained in this paper were performed in order to compare
with the experimental tests undertaken by BMT Fluid Mechanics Ltd. The experiments were
carried out to predict the critical wind speed for the onset of instability for the Second Forth
Road Bridge design shown in Figure 1. The main full-scale properties of the deck are shown in
Table I. Table II lists the structural non-dimensional parameters that have to be consistent with
the full scale bridge deck in order to ensure dynamic similarity, these include the logarithmic
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Figure 1. General arrangement of deck section.

Table I. Full scale properties of the Forth Road Bridge deck.

Overall Width (D) 31:2 m
Maximum Depth 3:2 m
Polar Mass Moment of Inertia=unit length (I) 2:13× 106 kgm
Mass=unit length (m) 17:3× 103 kg=m
Natural Torsion Frequency (f�) 0:4 Hz
Natural Heaving Frequency (fy) 0:174 Hz
Centre of Mass 2:09 m above so�t
Centre of Shear 1:46 m above so�t

Table II. Non-dimensional properties of the full-scale bridge deck.

M=�D2 I=�D4 
� 
y f�=fy

14.508 1.835 0.009 0.019 2.300

decrement for both heave, 
y, and rotation, 
�. In addition to the structural parameters the
aerodynamic parameters of reduced velocity and Reynolds number must also be consistent.
In wind tunnel tests the 1:65 model was free to rotate and heave. The critical wind speed

was evaluated by measuring the root mean square (rms) of the displacement for both rotation
and translation and was assumed to occur at the point of rapid response of displacement for
increasing reduced velocity. The experiment predicted a critical reduced velocity of 6:35±0:6.
The numerical results are compared to experimental data for a case where the wind tunnel

model is at zero incidence and only the central barrier remains, i.e. the wind barriers and
parapets are removed. The central barriers are not contained within our computational domain,
a portion of which can be seen in Figure 2. The computational mesh used in all the numerical
calculations is made up of 1789 elements. All simulations in this paper were performed using
a polynomial order of p=5, which implies 15 local degrees of freedom for each element.
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Figure 2. Close up of the computational mesh around the Forth Road Bridge deck.

4. PREDICTION OF FLUTTER INSTABILITY

4.1. Linear expansion of aerodynamic forces using aerodynamic derivatives

A widely used method to determine the critical reduced velocity for the onset of �utter insta-
bility of an elastically mounted body is to represent the lift and moment linearly [15, 16]. The
force and moment are presumed to be dependent on the angular and translational displacement
and velocity, and also the aerodynamic derivatives associated with the body. These aerody-
namic derivatives are proportional to the variation of lift and moment with displacement and
velocity. The aerodynamic derivatives can be evaluated analytically by assuming a �at plate
analogy or numerically by performing a series experiments where the motion of the bridge is
prescribed.
Linear expressions for the lift, Fy, and moment, M�, of a heaving and rotating body of

length D are given in terms of the non-dimensional aerodynamic derivatives H ∗
i and A∗

i
(i=1; 2; 3; 4) by Simiu and Scanlan [15] as

Fy =KH ∗
1 ẏ + KH

∗
2 �̇+ K

2H ∗
3 �+ K

2H ∗
4 y (15)

M� =KA∗
1 ẏ + KA

∗
2 �̇+ K

2A∗
3�+ K

2A∗
4y (16)

where K =D!=U and represents the reduced frequency of the motion. Therefore the full
physical system of the oscillating body can be expressed in terms of the linear expressions
for the structural motion of the body as well as the lift and moment due to the aerodynamic
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forces on the body. The resulting equations of motion for heave and rotation are

�y + 2�yKyẏ + K2yy=
1
ny
[KH ∗

1 ẏ + KH
∗
2 �̇+ K

2H ∗
3 �+ K

2H ∗
4 y] (17)

��+ 2��K��̇+ K2� �=
1
n�
[KA∗

1 ẏ + KA
∗
2 �̇+ K

2A∗
3�+ K

2A∗
4y] (18)

where Ky=D!y=U and K�=D!�=U and !y and !� represent the circular natural frequencies
of the body for translational and rotational oscillations, respectively. It is theorized that the
oscillatory motion of the body is sinusoidal and the �utter instability occurs when the heave
and rotational motion are of the same frequency [15–17], therefore the translational and
rotational displacements are represented as

y(t) = AyeiKt (19)

�(t) = A�eiKt (20)

Substituting Equations (19) and (20) into Equations (17) and (18) results in the following
relationships for the unknown K ,[

−K2 + 2�yKyK i + K2y −
1
ny
K2H ∗

1 i −
1
ny
K2H ∗

4

]
Ay −

[
1
ny
K2H ∗

2 i +
1
ny
K2H ∗

3

]
A�=0 (21)

and[
− 1
n�
K2A∗

1 i −
1
n�
K2A∗

4

]
Ay +

[
−K2 + 2��K�K i + K2� −

1
n�
K2A∗

2 i −
1
n�
K2A∗

3

]
A�=0 (22)

Equations (21) and (22) can be represented in a matrix format as[
A B
C D

][
Ay
A�

]
=

[
0
0

]
(23)

where

A=−K2 + 2�yKyK i + K2y −
1
ny
K2H ∗

1 i −
1
ny
K2H ∗

4 (24)

B=− 1
ny
K2H ∗

2 i −
1
ny
K2H ∗

3 (25)

C =− 1
n�
K2A∗

1 i −
1
n�
K2A∗

4 (26)

D=−K2 + 2��K�K i + K2� −
1
n�
K2A∗

2 i −
1
n�
K2A∗

3 (27)
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For the system to have a non-trivial solution the determinant of the matrix solution system
(23) must be zero, i.e.

AD − CB=0 (28)

The solution is then evaluated to determine a value of K which satis�es Equation (28). K
is taken to be a complex number such that K =KR + iKI where the real part represents the
frequency of the oscillations and the imaginary part of K dictates whether the solution is
growing or decaying. A positive value of KI indicates a damped solution and a negative
value speci�es oscillations of increasing amplitude. Where KI is zero indicates the critical
reduced velocity for the onset of �utter instability.

4.1.1. Aerodynamic derivatives of a �at plate. The solution of system (28) relies on the eval-
uation of accurate aerodynamic derivatives for the oscillating body being studied. Theodorsen
[17] derived an analytical method where the aerodynamic derivatives are determined by com-
paring the body with a �at plate in a potential �ow. The �at plate has the same structural
characteristics as the oscillating body and the aerodynamic derivatives are given in terms of
the Theodorsen circulation function C(k)=F(k) + iG(k) as

H ∗
1 =−	F(k)

2k
; H ∗

2 = − 	
8k

[
1 + F(k) +

2G(k)
k

]
(29)

H ∗
3 =− 	

4k2

[
F(k)− kG(k)

2

]
; H ∗

4 =
	
4

[
1 +

2G(k)
k

]
(30)

A∗
1 =

	F(k)
8k

; A∗
2 = − 	

32k

[
1− F(k)− 2G(k)

k

]
(31)

A∗
3 =

	
16k2

[
F(k)− kG(k)

2

]
; A∗

4 = − 	
8
G(k)
k

(32)

where F(k) and G(k) are given by Bessel’s functions of the �rst and second kind and of the
zero and �rst order:

F(k) =
J1(J1 + Y0) + Y1(Y1 − J0)
(J1 + Y0)2 + (Y1 − J0)2 (33)

G(k) =− Y1Y0 + J1J0
(J1 + Y0)2 + (Y1 − J0)2 (34)

and k is the reduced frequency based on the half-chord length, such that k=!D=2U . The
values of the aerodynamic derivatives are substituted into Equation (28) and solved for varying
values of k. When KI is zero the critical reduced velocity, Uc, can be found using the
relationship;

Uc =
KRc
kc

	
K�

(35)

where KRc and kc represent the critical values of KR and k at the point KI =0.
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Figure 3. Imaginary part of K indicating �utter limit using analytically derived aerodynamic
derivatives for a �at plate [17].

Figure 3 shows the variation of KI for increasing reduced velocity. The critical reduced
velocity can be found from the graph and is equal to Uc = 7:72. It can be seen from the graph
that as U�→ 0 and therefore U→ 0, KI → 0 due to the absence of a free stream to excite the
bridge deck section. Similarly as U�→∞ and K�→ 0 the bridge deck will not oscillate as it
has no natural frequency to excite.

4.1.2. Numerically derived aerodynamic derivatives. For any single geometry the aerody-
namic derivatives are dependent on the reduced velocity and can be numerically or experi-
mentally evaluated by prescribing the oscillation of a body to be purely translational or purely
rotational [6]. Equations (15) and (16) are therefore reduced to

Fy =KH ∗
1 ẏ + K

2H ∗
4 y (36)

M� =KA∗
1 ẏ + K

2A∗
4y (37)

for purely heave motion and

Fy =KH ∗
2 �̇+ K

2H ∗
3 � (38)

M� =KA∗
2 �̇+ K

2A∗
3� (39)

for purely rotational motion. The aerodynamic derivatives, H ∗
1 , H

∗
4 , A

∗
1 and A

∗
4 can therefore

be solved for using the matrix system


Kẏ1 K2y1
Kẏ2 K2y2
...

...
Kẏj K2yj
...

...
Kẏns K2yns




[
H ∗
1

H ∗
4

]
=




Fy1
Fy2
...
Fyj
...
Fyns




(40)
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Figure 4. Imaginary part of K indicating �utter limit using numerically derived aerodynamic derivatives.

and 


Kẏ1 K2y1
Kẏ2 K2y2
...

...
Kẏj K2yj
...

...
Kẏns K2yns




[
A∗
1

A∗
4

]
=




M�1

M�2
...
M�j
...
M�ns




(41)

where 16j6ns and ns denotes the number of sampling points in time. The matrix systems
in Equations (40) and (41) are solved using a least squares technique and the remaining
aerodynamic derivatives are evaluated in an analogous manner using the corresponding results
from purely rotational oscillations.
The bridge is forced to oscillate at various reduced frequencies to evaluate the aerodynamic

derivatives at these frequencies. The critical reduced velocity can then be solved in an identical
manner as discussed in Section 4.1.1. Figure 4 shows the variations of KI with reduced
velocity, where a reduced velocity of 6.21 results in a zero value of KI .

4.2. Linear quasi-steady formulation

The use of quasi-steady analysis has long been applied to evaluate the potential of a body to
undergo heave galloping [18, 19]. Quasi-steady analysis has been successful in this area as the
time period of the motion of the body is far longer than the time period of the �uctuations
of the �ow and therefore it is the time averaged properties of the �ow which signi�cantly
in�uence the mechanics of the body.
The quasi-steady formulation is dependent on the evaluation of the variation of lift and

moment with displacement, whilst the method outlined in Section 4.1.2 used the variation of
lift and moment with displacement and velocity. Therefore, the main di�erence between this
technique and the previous one is that the determination of the critical reduced velocity is
solely dependent on static calculations when considering the quasi-steady technique, whereas
the evaluation of the aerodynamic derivatives requires dynamic calculations.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1239–1256



PREDICTION OF FLUTTER INSTABILITIES 1249

Using quasi-steady principles the e�ective angle of attack, �, is related to the vertical
velocity of the body:

�= − ẏ (42)

Quasi-steady theory is less widely applied to the rotational motion of a body. Though it has
been shown [18, 19] that the e�ective angle of incidence for purely rotational oscillations is
proportional to the actual angle of attack and the angular velocity of the body:

�= �− R�̇ (43)

where R is chosen to the half-chord length non-dimensionalized by D [18, 20]. If the bridge
is undergoing both translational and rotational motion the e�ective, linearized angle of attack
is the combination of Equations (42) and (43):

�= �− R�̇− ẏ (44)

The motion of the bridge can be related to the aerodynamic force and moment, represented
as the force coe�cients, Fy and M� by

�y + 2�yKyẏ + K2yy=
Fy
ny

(45)

��+ 2��K��̇+ K2� �=
M�

n�
(46)

Linearizing the applied force and moment about �=0 and using Equation (44) we obtain

Fy(�) = Fy(0) +
dFy
d�

∣∣∣∣
0
�

= Fy(0) +
dFy
d�

∣∣∣∣∣
0

(�− R�̇− ẏ)

M�(�) =M�(0) +
dM�

d�

∣∣∣∣
0
�

=M�(0) +
dM�

d�

∣∣∣∣
0
(�− R�̇− ẏ)

which upon substitution into Equations (45) and (46) leads to the following linear equations
for the motion of the structure:

�y + 2�yKyẏ + K2yy=
1
ny

dFy
d�

∣∣∣∣
0
(�− R�̇− ẏ) (47)

��+ 2��K��̇+ K2� �=
1
n�
dM�

d�

∣∣∣∣
0
(�− R�̇− ẏ) (48)
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Figure 5. Variation of Fy and M� with � for the Forth Bridge design: (a) Fy
against � and (b) M� against �.

where the values of Fy (�=0) and M� (�=0) are omitted as they cause static displace-
ments and do not in�uence the �utter stability of the structure. The system is dependent
on the variation of Fy and M� with �. This variation for the Forth Road Bridge deck de-
sign is graphically shown in Figure 5. These results were evaluated at Re=10000 under
two-dimensional assumptions and dFy=d�|0 = 5:34 and dM�=d�|0 = 1:40.
The onset of �utter is once again presumed to occur when the frequency of the rotational

and translational motion coincides. Solutions of the form:

y=AyeiKt ; �=A�eiKt (49)

are taken where K =!D=U =KR + KI i. The variable ! is complex with its imaginary part
representing the frequency of the oscillations and its real part dictating the damping of the
system. By substituting the above solutions for y and � and collecting Ay and A� terms we
have

[
−K2 + K2y + 2�yKyK i +

1
ny

dFy
d�

∣∣∣∣
0
K i

]
Ay +

[
− 1
ny

dFy
d�

∣∣∣∣
0
+
1
ny

dFy
d�

∣∣∣∣
0
RK i

]
A� (50)

[
1
n�
dM�

d�

∣∣∣∣
0
K i

]
Ay +

[
−K2 + K2� −

1
n�
dM�

d�

∣∣∣∣
0
+ 2��K�K i +

1
n�
dM�

d�

∣∣∣∣
0
RK i

]
A� (51)

which are again represented as

[
A B
C D

] [
Ay
A�

]
=

[
0
0

]
(52)

and for the system to have a non-trivial solution

AB− CD=0 (53)
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Figure 6. Imaginary part of K indicating �utter limit using quasi-steady analysis.
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Figure 7. Rotational displacement of Forth Road Bridge deck (a) U�=2:5.
(b) U�=5. (c) U�=6. (d) U�=7.
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Figure 8. Heaving displacement of Forth Road Bridge deck (a) U�=2:5.
(b) U�=5. (c) U�=6. (d) U�=7.

As before the value of KI indicates whether a solution is growing or decaying and a positive
value of KI indicates a damped solution and a negative value indicates a growing solution.
The variation of KI with reduced velocity U�=U=f�D is shown in Figure 6. These results
predict the critical reduced velocity for the Forth Road Bridge design as 6.58. The variation
of KI with increasing U� is as expected, that is KI → 0 as U�→∞. As U�→ 0, KI does not
converge to zero, though it must be considered that the amplitudes of the oscillation, A� and
Ay can take a zero value for U�=0.

4.3. Freely oscillating bridge deck

The critical reduced velocity can be evaluated by performing a series of numerical experi-
ments where the bridge deck is allowed to oscillate under the speci�ed governing structural
parameters. The reduced velocity is incrementally increased and the point at which the trans-
lational or rotational amplitude of the oscillations steadily increases is taken as the critical
reduced velocity for the onset of �utter instability.
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Figure 9. Variation of rotational, f�, and heave, fy, frequencies against reduced velocity.

Time histories for the rotational and heaving displacements for increasing reduced velocity
can be seen in Figures 7 and 8, respectively. As can be seen from the graphs the magnitude
of the oscillations quickly decrease for U�=2:5 for both rotation and heave. At larger reduced
velocities the oscillations maintain their magnitude, the value of which is dependent on the
reduced velocity.
The variation of the frequencies of the rotational and heave motion for increasing reduced

velocity are shown in Figure 9. These results are in agreement with the assumption made by
the aerodynamic derivatives approach (Equations (19) and (20)) and the quasi-steady tech-
nique (Equation (49)) that at the point of �utter instability the frequencies of the translational
and rotational motion is identical.
Figure 10 shows the instantaneous �ow �eld and pressure distribution around the structure

for a complete rotational oscillation. The contours shown represent vorticity where black
indicates a high value of vorticity and grey a low value of vorticity. A similar scheme is
used for the pressure distribution where black shading indicates a positive pressure and grey
shading a negative pressure. The �ow separates from the upper leading edge resulting in an
area of low pressure. As the bridge deck oscillates the point where this shear layer re-attaches
constantly changes leading to pressure �uctuations which drive the high amplitude oscillations
shown in Figures 7(c) and 8(c).
Figures 11 and 12 show the computational and experimental rms values of rotational and

translational displacement, respectively. The two sets of data are in reasonable agreement,
particularly when the disparity in Reynolds number between the numerical simulations and
experiments is considered. The computations were performed for reduced velocities, U�, rang-
ing from 2.5 to 7 and Reynolds numbers between 4167 and 11667, whilst the experimental
Reynolds number over the same range would have been of the order of 1× 105 and 1× 106.
The rms for heaving and rotation appears to be over predicted for U� equal to 5 and 6 and
under predicted for U�=7. This could be a consequence of three-dimensional e�ects captured
in the experiments and not included in the numerical simulations. The experimental set-up
would have included three-dimensional e�ects which the numerical calculations have omitted.
At low oscillation amplitudes we would expect the vortical structures produced experimentally
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Figure 10. Flow �eld around the Forth Road Bridge deck for U�=6 over one rotational cycle.

to have a �nite correlation length and corresponding decorrelation of the forces and moments
along the length of the bridge deck section. It has been shown for circular cylinders that
when the oscillations increase in size the vortical structures become homogeneous along the
length of the body [21, 22] and we therefore make the conjecture that this phenomenon also
occurs during the experiments discussed in this paper. The enforced correlation of the two-
dimensional computations would therefore be expected to produce a larger amplitude than the
experimental results.
The experimental results predicted the critical wind speed for the onset of instability to be

6:35± 0:6, whilst the numerical data predicts the onset of instability as between 6 and 7.
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Figure 12. Root mean square values of heaving displacement.

5. COMPARISON AND CONCLUSION

The predicted critical wind velocities, Uc, are summarized below:

• Flat plate analogy: 7.72.
• Numerically evaluated aerodynamic derivatives: 6.21.
• Linear quasi-steady formulation: 6.58.
• Numerical freely oscillating bridge deck: 6:5± 0:5.
• Experimental freely oscillating bridge deck: 6:35± 0:6.

All the analytical and numerical predictions compare favourably with the experimental result.
The �at plate analogy produces the worst estimate supporting the observation that leading edge
e�ects are important when evaluating �utter instabilities. As the �at plate analogy method
requires no knowledge of the aerodynamic properties of the bridge deck and is near instan-
taneous to compute, it can still be regarded as an e�ective and economical tool to predict
bridge deck �utter instabilities.
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The agreement between the numerical and experimental oscillating bridge deck is particu-
larly encouraging and evidence that the numerical algorithm is e�ective and could be utilized
to investigate bridge designs and their sensitivity to leading edge modi�cations.
However, the role of three-dimensional e�ects and Reynolds number scaling is still an open

question. The geometry considered here has a sharp leading edge which is less likely to be
as sensitive to Reynolds number and three-dimensional e�ects as a rounded leading edge.
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